
ME 7247: Advanced Control Systems Fall 2022–23

Lecture 1: Overview and linear algebra review
Friday September 9, 2022

Lecturer: Laurent Lessard Scribe: Laurent Lessard

First lecture of the semester! Overview of the main topics we will cover in the class, review of some
linear algebra material, overview of estimation and control problems.

1 Overview of the class

The main theme of the class is how uncertainty can be modeled and treated in the context of control
systems. Here, a system is a dynamical system, which has the abstract representation:

System with
state x

Input u Measurement y

Example: A DC motor connected to a battery.

• The input u(t) is the voltage we supply to the motor, which is a function of time.

• The measurement y(t) is the angular speed of the motor shaft, which we measure using a
tachometer (and may be inexact or noisy).

• The system is the motor itself. The state x(t) is a vector containing all the quantities that
determine the motor’s behavior. This may include the current through the windings, the
angular position and speed of the shaft, the temperature, etc.

In introductory controls classes, we typically assume a model of the system is known, i.e. we have
(linear) differential equations that describe how y(t) is related to u(t). We typically ask: how can
we choose u(t) as a function of y(t) so that the closed-loop system has desirable performance?

In this class, we will expand the scope in several directions of practical interest:

• Systems that may have multiple inputs and/or multiple outputs (MIMO systems)

• Cases where the measurements are noisy or otherwise inexact.

• Cases with hard constraints, such as a temperature limit that must never be exceeded.

• Cases where the system itself is uncertain, either because the system was approximated (e.g.
it isn’t actually linear), or the model was obtained experimentally and contains errors.

We will also frame these problems using an optimization viewpoint, which is more modern and
more flexible than the classical tools you might have seen in controls classes. So we will not use
transfer functions, root locus, Bode plots, etc. We will emphasize both mathematical rigor as well
as practical implementations using Matlab.

1



2 Linear algebra review

Key definitions: inner product, outer product, vector norm, angle between vectors, orthogonal-
ity, subspace, span, dimension, range, nullspace, basis, orthonormal basis, semi-orthogonal matrix,
orthogonal matrix, orthogonal complement (perp space), rank, invertible matrix.

2.1 Matrix multiplication

Vectors are treated as columns by default, and we reference them with lower-case letters. Matrices
are referenced with upper-case letters. For example, if x ∈ Rn and A ∈ Rm×n this means:

x =


x1
x2
...
xn

 and A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

 ,

where each xj and each aij is a real number. Because vectors are columns by default, writing x ∈ Rn

is the same as writing x ∈ Rn×1. Two matrices can be multiplied together whenever the first matrix
has as many columns as the second matrix has rows. If A ∈ Rm×p and B ∈ Rp×n, then we can
write C = AB, where

cij =

p∑
k=1

aikbkj .

Matrix multiplication satisfies the following properties:

(i) Not commutative in general: AB ̸= BA. In fact, AB and BA might not both be defined, and
may be different sizes. An exception is when one of the matrices is a scalar, i.e. 1× 1.

(ii) Distributive: A(B + C) = AB +AC whenever the dimensions make sense.

(iii) Associative: (AB)C = A(BC). This is useful because some groupings may require fewer
arithmetic operations than others (more efficient to compute).

Block partitioning. Consider this example of a 3× 3 matrix multiplying a 3× 2 matrix: 1 2 4
−3 1 0
4 4 −1

1 2
0 −1
4 1

 =

17 4
−3 −7
0 3

 .

The (1, 1) entry is calculated using the first row of the first matrix and the first column of the second
matrix: 17 = 1 · 1 + 2 · 0 + 4 · 4. If the matrix is partitioned into blocks, we can apply the same
multiplication formula, but in a block-wise fashion. Using the same example: [1 2

] [
4
][

−3 1
4 4

] [
0
−1

][1 2
0 −1

]
[
4 1

]
 =

 [
17 4

][
−3 −7
0 3

] .

For example, the (1, 1) block is calculated using the first block-row of the first matrix and the first
block-column of the second matrix:[

17 4
]
=
[
1 2

] [1 2
0 −1

]
+
[
4
] [
4 1

]
.
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Vector operations. Consider two vectors x ∈ Rm and y ∈ Rn. If m = n (both vectors are
the same length), we can form their inner product by summing the products of the corresponding
entries. We can write this in several different ways:

⟨x, y⟩ := xTy =
n∑

i=1

xiyi

The inner product of two real vectors is a real scalar (a number). It is also commutative, so
⟨x, y⟩ = ⟨y, x⟩. Writing the inner product as xTy views it as a matrix-matrix multiplication, where
xT, the transpose of x, is in R1×n, while y ∈ Rn×1.

We can also multiply a column by a row, which produces a matrix. If x ∈ Rm and y ∈ Rn, then the
outer product of x and y is

xyT =

x1y1 · · · x1yn
...

. . .
...

xmy1 · · · xmyn


We will also make frequent use of vector norms. The norm of a vector is a scalar that can be
interpreted as the “size” of the vector. For all x, y ∈ Rn and α ∈ R, a vector norm satisfies

(i) Positivity: ∥x∥ ≥ 0 for all x.

(ii) Definiteness: If ∥x∥ = 0 then x = 0.

(iii) Absolute homogeneity: ∥αx∥ = |α|∥x∥.

(iv) Triangle inequality: ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

Positivity is actually a consequence of the triangle inequality and absolute homogeneity, but we
include it anyway because it is a useful property. There are many possible norms, but the one we
will use the most is the Euclidean or standard norm, which we just call “norm”. It is:

∥x∥ :=

(
n∑

i=1

x2i

)1/2

.

In addition to the four properties above, the standard norm also satisfies the two properties:

(v) Inner product equivalence: ∥x∥2 = ⟨x, x⟩.

(vi) Cauchy–Schwarz inequality: |⟨x, y⟩| ≤ ∥x∥∥y∥.

We can also define the angle between two vectors x, y ∈ Rn as the angle θ ∈ [0, π] such that

cos θ =
⟨x, y⟩
∥x∥∥y∥

When ⟨x, y⟩ = ∥x∥∥y∥, the angle between them is 0 and the vectors are aligned. When ⟨x, y⟩ = 0,
the vectors are orthogonal and the angle between them is π

2 . When ⟨x, y⟩ = −∥x∥∥y∥, the angle
between them is π and the vectors point in opposite directions.
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Matrix product interpretations. If A ∈ Rm×p and B ∈ Rp×n, we can decompose the product
in several useful ways. First, we can distribute A across the columns of B:

C = AB = A

 b1 · · · bn

 =
[
Ab1 · · · Abn

]
.

So the jth column of C is Abj , where bj is the jth column of B. Likewise, we can distribute B across
the rows of A:

C = AB =

 ãT
1
...
ãT
m

B =

ã
T
1B
...

ãT
mB

 .

So the ith row of C is ãT
i B, where ãT

i is the ith row of A. We can also simultaneously decompose A
by columns and B by rows, leading to a matrix of inner products:

C = AB =

 ãT
1
...
ãT
m


 b1 · · · bn

 =

ã
T
1 b1 · · · ãT

1 bn
...

. . .
...

ãT
mb1 · · · ãT

mbn

 =

 ⟨ã1, b1⟩ · · · ⟨ã1, bn⟩
...

. . .
...

⟨ãm, b1⟩ · · · ⟨ãm, bn⟩

.
In this case, cij = ãT

i bj = ⟨ãi, bj⟩. Conversely, we can also decompose A by columns and B by rows,
leading to a sum of outer products:

C = AB =

 a1 · · · ap


 b̃T1

...

b̃Tp

 = a1b̃
T
1 + · · ·+ apb̃

T
p .

Each aib̃
T
j is a Rm×n matrix, the same size as C.

2.2 Subspaces

A subspace S ⊆ Rn is a subset of Rn with the properties that:

(i) It always contains zero: 0 ∈ S.

(ii) Is closed under addition: If x, y ∈ S, then x+ y ∈ S.

(iii) Is closed under scalar multiplication: If x ∈ S and α ∈ R, then αx ∈ S.

A set of vectors {v1, . . . , vk} spans S if every vector in S can be written as a linear combination
of the vi’s. We write: S = span(v1, . . . , vk). If a spanning set is linearly independent, it is called a
basis. Every basis of S contains the same number of vectors. This number is called the dimension of
S, written dim(S). Given a basis for S, every vector in S can be expressed as a linear combination
of the basis vectors in exactly one way.

By convention, if S = {0}, then dim(S) = 0. A subspace can never be empty; it always contains at
least the zero vector. If dim(S) = 1, then S is a line through the origin. If dim(S) = 2, then S is a
plane. If dim(S) = n, then S = Rn, the whole space.
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Range, nullspace, and rank. Given a matrix A ∈ Rm×n, two important subspaces are the range
and nullspace of A. The range of A is the set of vectors that can be reached upon multiplication by
A. We can define it using set notation as

range(A) := {Ax | x ∈ Rn} .

The nullspace of A is the set of vectors that map to zero through A, which we write as

null(A) := {x ∈ Rn | Ax = 0} .

Note that range(A) is a subspace of Rm while null(A) is a subspace of Rn.

The column rank of a A is the dimension of the span of the columns of A. The row rank of A is the
dimension of the span of the rows of A. An important fact: the row rank and column rank are equal,
so we call them both rank. The span of the columns is the range, so rank(A) := dim range(A). Row
and column rank being equal means that rank(A) = rank(AT). If rank(A) = m, we say A has full
row rank. If rank(A) = n, we say A has full column rank. In general, rank(A) ≤ min(m,n). If A
has full row rank or full column rank, we simply say that A has full rank.

Orthonormal basis. Every subspace S has an orthonormal basis. This means that there exists a
set {u1, . . . , uk} such that each vector has norm 1 and all pairs are orthogonal. In other words,

(i) span(u1, . . . , uk) = S

(ii) ⟨ui, uj⟩ =

{
1 if i = j

0 otherwise
.

Given any spanning set {v1, . . . , vk} for S, one way to obtain an orthonormal basis for S is via the
Gram–Schmidt process. An example of an orthonormal basis for Rn is the standard basis:

e1 =


1
0
...
0

 , e2 =


0
1
...
0

 , . . . en =


0
0
...
1

 .

If {u1, . . . , uk} is an orthonormal set of vectors, the matrix U :=
[
u1 · · · uk

]
∈ Rn×k is a semi-

orthogonal matrix. It has the property that UTU = Ik (the k × k identity matrix). Multiplication
by a semi-orthogonal matrix preserves the inner product and the Euclidean norm. In other words,
⟨Ux,Uy⟩ = ⟨x, y⟩ and ∥Ux∥ = ∥x∥. It’s “semi” because UUT ̸= I in general. In the case where U
is square and semi-orthogonal, we have UTU = UUT = In, which means U−1 = UT. In this case,
U is called orthogonal.

Orthogonal complement. The orthogonal complement (also called the perp space) of S ⊆ Rn

is the set of vectors orthogonal to all vectors in S. We define this as:

S⊥ := {x ∈ Rn | ⟨x, s⟩ = 0 for all s ∈ S} .

S⊥ is a vector space. Every vector v ∈ Rn can be decomposed in a unique way as v = x+ y, where
x ∈ S and y ∈ S⊥. If {u1, . . . , uk} is a basis for S, and {uk+1, . . . , un} is a basis for S⊥, then
{u1, . . . , un} is a basis for Rn. Finally, we have dim(S) + dim(S⊥) = n.
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2.3 Linear equations

A set of m linear equations in the variables {x1, . . . , xn} looks like
a11x1 + a12x2 + · · ·+ a1nxn = b1

...

am1x1 + am2x2 + · · ·+ amnxn = bm

 , or

a11 · · · a1n
...

. . .
...

am1 · · · amn


x1...
xn

 =

 b1...
bm

 , or Ax = b.

There are precisely three cases that can occur when solving Ax = b.

1. There are no solutions. For example, x1 + x2 = 1 and x1 + x2 = 0.

2. There is exactly one solution. For example, x1 = 1 and x2 = 0.

3. There are infinitely many solutions. For example, x1 + x2 = 0.

A solution can exist if and only if b ∈ range(A). If a solution x̂ does exist and there is a nonzero
v ∈ null(A), then x̂ + αv is also a solution for any α ∈ R, so there are infinitely many solutions.

Solve Ax = b

There are
no solutions.

At least
one solution.

Exactly one
solution.

Infinitely many
solutions.

b /∈ range(A) b ∈ range(A)

null(A) = {0} null(A) ̸= {0}

The cases where A has full rank are of particular interest, because they imply existence and unique-
ness properties for the solutions of Ax = b. Here are two results about this.

Theorem 2.1 (existence). Let A ∈ Rm×n. The following are equivalent.

(i) rank(A) = m (A has full row rank).

(ii) range(A) = Rm.

(iii) For all b ∈ Rm, there exists a solution to the equation Ax = b.

Theorem 2.2 (uniqueness). Let A ∈ Rm×n. The following are equivalent.

(i) rank(A) = n (A has full column rank).

(ii) null(A) = {0}.

(iii) If x̂ is a solution to Ax = b, then it is the only solution.

If both of these conditions hold, i.e. rank(A) = m = n, then A must be square. This corresponds
to the case where A is invertible, and the unique solution to Ax = b is x = A−1b.
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3 Estimation and control problems

Most engineering problems can be boiled down to some version of Ax = b, so it’s important to know
how to solve such equations. We generally encounter two versions, which we will call estimation
problems and control problems. We will look at these in more detail later. Here is an overview.

Estimation problems. In an estimation problem, A is typically a tall matrix (m > n). Another
word for this is overdetermined (there are more equations than variables). In such cases, there are
typically no solutions to Ax = b. Our task is to find an x̂ that is a “good fit”, so Ax̂ ≈ b in some
sense (we will make this more precise later). A typical estimation interpretation is to decompose A
into its rows:

b = Ax =

 ãT
1
...
ãT
m

x =

ã
T
1 x
...

ãT
mx

 =

 ⟨ã1, x⟩...
⟨ãm, x⟩

 .

Here, each component of b is the inner product of the corresponding row of A with x. In other
words, bi = ãT

i x = ⟨ãi, x⟩. This is a scalar because ãT
i ∈ R1×n while x ∈ Rn×1. We can interpret

b1, . . . , bm as m linear measurements of x, the quantity we’re trying to estimate.

For example, suppose we are trying to estimate the epicenter of an earthquake. We want to find its
coordinates (latitude, longitude, depth) and we have m seismometers installed at various locations
on the Earth. Each seismometer provides a noisy measurement of its distance to the epicenter,
which we can relate to the coordinates. If we use many seismometers (large m), we have a hope of
overcoming the noise and accurately triangulating the epicenter location.

Control problems. In a control problem, A is typically a wide matrix (m < n). Another word
for this is underdetermined (there are more variables than equations). In such cases, there are
typically many possible solutions to Ax = b. Our task is to design x so that b has some desirable
properties. A typical control interpretation is to decompose A into its columns:

y = Ax =

 a1 · · · an


x1...
xn

 = a1x1 + · · ·+ anxn.

Here, each ai can be interpreted as an actuator. Therefore, among all possible combinations of the
n actuators that achieves the desired total b, our task is to pick the “best” one. There are many
ways to define “best”, and we will explore this in greater detail later.

For example, suppose we have a satellite in space and it is outfitted with n small thrusters that
point in different directions. Thruster i provides a 3-dimensional force and torque with respect to
the center of mass (six degrees of freedom in total), which we write as ai ∈ R6. Let x1, x2, . . . , xn
be the intensities of the n thrusters. If we collect the columns ai into a matrix A ∈ R6×n, the
total force and torque provided by the thrusters is Ax. Among all possible choices that achieve our
target Ax = b, our goal is to select the one that uses the least fuel. These small thrusters are more
efficient at smaller thrust; suppose the fuel used by thruster i is fi = x2i . So the total fuel used by
all thrusters is ∥x∥2. We want the x with smallest possible norm that satisfies Ax = b.
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